Replacement of the bacteriophage Mu strong gyrase site and effect on Mu DNA replication.
نویسندگان
چکیده
The bacteriophage Mu strong gyrase site (SGS) is required for efficient replicative transposition and functions by promoting the synapsis of prophage termini. To look for other sites which could substitute for the SGS in promoting Mu replication, we have replaced the SGS in the middle of the Mu genome with fragments of DNA from various sources. A central fragment from the transposing virus D108 allowed efficient Mu replication and was shown to contain a strong gyrase site. However, neither the strong gyrase site from the plasmid pSC101 nor the major gyrase site from pBR322 could promote efficient Mu replication, even though the pSC101 site is a stronger gyrase site than the Mu SGS as assayed by cleavage in the presence of gyrase and the quinolone enoxacin. To look for SGS-like sites in the Escherichia coli chromosome which might be involved in organizing nucleoid structure, fragments of E. coli chromosomal DNA were substituted for the SGS: first, repeat sequences associated with gyrase binding (bacterial interspersed mosaic elements), and, second, random fragments of the entire chromosome. No fragments were found that could replace the SGS in promoting efficient Mu replication. These results demonstrate that the gyrase sites from the transposing phages possess unusual properties and emphasize the need to determine the basis of these properties.
منابع مشابه
The phiX174-type primosome promotes replisome assembly at the site of recombination in bacteriophage Mu transposition.
Initiation of Escherichia coli DNA synthesis primed by homologous recombination is believed to require the phiX174-type primosome, a mobile priming apparatus assembled without the initiator protein DnaA. We show that this primosome plays an essential role in bacteriophage Mu DNA replication by transposition. Upon promoting transfer of Mu ends to target DNA, the Mu transpososome undergoes transi...
متن کاملMolecular Model for the Transposition and Replication of Bacteriophage Mu and other
A series of molecular events will explain how genetic elements can transpose from one DNA site to another, generate a short oligonucleotide duplication at both ends of the new insertion site, and replicate in the transposition process. These events include the formation of recombinant molecules which have been postulated to be intermediates in the transposition process. The model explains how t...
متن کاملA cell engineering strategy to enhance supercoiled plasmid DNA production for gene therapy
With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS...
متن کاملBacteriophage Mu integration in yeast and mammalian genomes
Genomic parasites have evolved distinctive lifestyles to optimize replication in the context of the genomes they inhabit. Here, we introduced new DNA into eukaryotic cells using bacteriophage Mu DNA transposition complexes, termed 'transpososomes'. Following electroporation of transpososomes and selection for marker gene expression, efficient integration was verified in yeast, mouse and human g...
متن کاملTopoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli.
DNA replication and recombination generate intertwined DNA intermediates that must be decatenated for chromosome segregation to occur. We showed recently that topoisomerase IV (topo IV) is the only important decatenase of DNA replication intermediates in bacteria. Earlier results, however, indicated that DNA gyrase has the primary role in unlinking the catenated products of site-specific recomb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 181 18 شماره
صفحات -
تاریخ انتشار 1999